Program – Bachelor of Science (B.Sc.)

Program outcomes

Students taking admission to this program of B.Sc. or expected to get equipped with following outcomes

- 1. Inculcating scientific awareness and thinking among the students.
- 2. Explaining the basic scientific principles, objectives and methods.
- 3. Understanding the issues related to nature and environmental context and sustainable development and to handle the unexpected situation by critically analyzing the problem.
- 4. Ability to communicate with others in regional language and in English.

Course	outcomes-	B.Sc.	Zoology
--------	-----------	--------------	---------

Program	Program Objectives	Program Specific Objectives
B.Sc. Zoology	Inspire the students for pursuing higher studies in Zoology and for becoming an entrepreneur and also enable students to get employed in the Biological research Institutes, Industries, Educational Institutes and in the various concerning departments of State and Central Government based on subject Zoology. To become aware of environmental crisis.	 PSO1. To provide thorough knowledge about various animal sciences from primitive to highly evolved animal groups. PSO2. To make the students aware of applications of Zoology subject in various Industries. PSO3. To equip the students with skills related to laboratory as well as field based studies. PSO4. To make the students aware about conservation and sustainable use of Biodiversity. PSO5. To inculcate interest and foundation for further studies in Zoology. PSO6. To address the socio-economical challenges related to animal sciences. PSO7. To facilitate students for taking up and shaping a successful career in Zoology.
Sr. No.	Course	Course Outcomes
1	F.Y.B.Sc. Zoology	CO1. Exposure to diversity in animal groups and to understand the process of Evolution and industries based on the zoological areas are covered.CO2. The practical course is aimed to equip the students with skills

		required for animal identification, morphological, anatomical, technical description, classification and also applications of zoology in the various industries.
2	S.Y.B.Sc. Zoology	CO1. The level of the theory and practical courses are one step ahead of the first year B.Sc. courses based on content of first year syllabus.CO2. The course intends to inform the students in Animal Systematics, Animal Diversity and applied field of Zoology such as Fisheries, Apiculture, Sericulture, etc.
3	T.Y.B.Sc. Zoology	 CO1. Detailed studies of the various disciplines of the zoology subject and other branches of zoology such as Genetics, Animal Physiology, Molecular biology, Biochemistry, Micro technique, Animal systematic and Diversity, General Embryology, Histology. Cell Biology, Biodiversity, Entomology, Biological Techniques, etc. CO2. The students will also learn about use of various technical skills in the biological sciences to be helpful during research in the zoology subject.

Course outcomes- B.Sc. Botany

Programs offered

Sr.	Program	Program Objectives	Program Specific Objectives
No.			
1	BSc Botany	PO1.Critical Thinking: The	PSO1. To provide thorough knowledge
		curriculum made for the betterment	about various plant groups from primitive
		of the students, enhance the ability	to highly evolve.
		and thinking power.	
		PO2. Effective Communication:	PSO2. To make the students aware of
		the complete medium of program	applications of different plants in various
		is in English so students will	industries.
		communicate in the same.	
		PO3.Social Interaction: Due to	PSO3. To highlight the potential of these
		continuous field visits in the	studies to become an entrepreneur To
		interior regions students interact	equip the students with skills related to
		with the social activities for their	laboratory as well as field based studies
		study.	PSO4. To make the students aware about
		PO4.Effective Citizenship:	conservation and sustainable use of plants
		Being the botanist students have to	
		communicate with many people,	
		they become more familiar as well	
		as interactive	PSO5. To create foundation for further
		PO5.Ethics: The subject teach	studies in Botany
		students about the ethical approach,	
		not to cut the plants.	PSO6. To address the socio-economical
		PO6.Environment and	challenges related to plant sciences
		Sustainability: conservation	
		practices are studied for sustainable	PSO7. To facilitate students for taking up
		development	and shaping a successful career in Botany
		PO7.Self-directed and Life-long	
		Learning: each and every aspect of	

the module teaches lifelong	
learning	

Courses offered- Under graduate Botany

Sr.	Class	Course	Course Outcomes	
No.				
1	F. Y. B. Sc	111: Plant Diversity,	To provide thorough knowledge about various	
	Botany	Plant	primitive plant groups.	
	(Annual	Morphology and		
	Pattern)	Anatomy		
		112: Industrial Botany	To make the students aware of applications of	
			different plants in various industries	
			To highlight the potential of these studies to	
			become an entrepreneur	
		Practical	To get acquainted with the subject in live form	
			and visits to industries	
3	S. Y. B. Sc	211: Taxonomy of	To provide thorough knowledge about various	
	Botany	Angiosperms and Plant	highly evolved plant groups and their community	
	Semester I	community	structure	
		212: Plant Physiology	To study the different metabolic process for	
			synthesis of food material	
	S. Y. B. Sc	221: Plant Anatomy	Internal structure will be observed for further	
	Botany	and Embryology	studies as well as to study the developmental	
	Semester II		pattern of plant	
		222: Plant	To study the techniques of multiplication and	
		Biotechnology	Nano techniques	

		Practical based on	To equipped the students with skills related to	
		theory course	laboratory as well as field based studies	
4	T. Y. B. Sc.	331: Cryptogamic	Interpret the performance characteristics & life	
	Botany	Botany	cycles of various lower plants	
	Semester III	332: Cell and	To develop the mind from the cellular to	
		Molecular Biology	molecular level.	
		333: Genetics and	Analyze the evolution with genetically	
		Evolution	characteristics for future aspects	
		334: Spermatophyta	Evaluate the performance of various line of	
		and Paleobotany	evolution with respect to live and fossil forms	
		335: Horticulture and	To develop the skills to become entrepreneurship	
		Floriculture	for small scale startup	
		336: Computational	Apply optimization, numerical methods, statistical	
		Botany	methods to solve problems	
	T. Y. B. Sc.	341: Plant Physiology	To study the different metabolic process for	
	Botany	and Biochemistry	synthesis of food material in details	
	Semester IV			
		342: Plant Ecology	To make the students aware about conservation	
		and Biodiversity	and sustainable use of plants	
		343: Plant Pathology	Design different post harvest methods to cope	
			over diseases.	
		344: Medicinal and	To make the students aware about conservation	
		Economic Botany	and sustainable use of plants	
		345: Plant	To study the techniques of multiplication and	
		Biotechnology	Nano techniques	
		346: Plant Breeding	Evaluate the performance of multiplication	
		and Seed Technology	technique and seed storage technique	

Course outcomes- B.Sc. Chemistry	Course	outcomes-	B.Sc.	Chemistry
---	--------	-----------	-------	-----------

	Program	Program objectives	Program specific objectives
1	B Sc. Chemistry	PO1. CRITICALTHINKING The curriculum is designed such way that students should acquire and ability to observe accurately and objectively. They should be able to solve the problems and also think scientifically, independently and draw rational conclusions.	PSO1 To provide the basic principles of all branches of chemistry knowledge of chemical principles and make them independent for the effective application of it.
		PO2. EFFECTIVE COMMUNICATION The medium of instruction for this course is English. English being the language of world students become habitual to communicate in English using language of Chemistry.	PSO 2 To provide thorough knowledge of laboratory skills so that students can prepare for the experimental setup, actual working of equipments, obtain experimental data and interpretation of it. This then interpreted using theoretical principles.
		PO3 SOCIAL INTERACTIONS In this course students are made aware of environment related issues. They are made aware of optimal use of fertilizers, water, fuels and drugs. PO4 EFFECTIVE CITIZENSHIP In this program students are made aware of pollution problems waste water management, water treatment etc. They are also made aware importance of energy and	PSO3 To make the students self sufficient in understanding and handling the various issues that may arise related to chemistry.
		water, food, fuels, general hygiene and cleanliness etc. PO5 ETHICS In this program students are made alerts regarding misuse of food adulteration, chemical technology, poisons, fungicides, pesticides and chemical and nuclear	

|--|--|--|--|

Courses offered – Under graduate Chemistry

Sr.No	Class	Course	Course Outcomes
1	F.Y.B.Sc.		This course enables students to understand basic laws regarding
	Chemistry	Paper I	states of matter, surface chemistry, thermodynamics and structure of
	(Annual	Physical &	atom. Students are also made aware of mole concept, derivations,
	Pattern)	Inorganic	depictions and problem solving and periodic properties of the
		Chemistry	elements including the preliminary theories of bonding.
		Paper II	Students are made aware of fundamental concepts of organic and
		Organic &	inorganic chemistry which governs the structure, bonding,
		Inorganic	properties, structural effects, acid-base theories, preparation
		Chemistry	methods, reactivity and stereochemistry of organic molecules.
		Paper III	Chemistry is an experimental subject; practical course is intended to
			achieve the basic skills required for understanding the concepts and
		Practical	authenticating the basic laws and principles of chemistry &helps in
		chemistry	development of practical skills of the students.
2	S.Y.B.Sc.	Physical &	Students are made aware about kinetics of chemical reactions,
	Chemistry	Analytical	photochemical laws, and distribution law and extraction process.
	(semester	Chemistry	Students are introduced to analytical chemistry in which they are
	Pattern)	CH211	made aware of inorganic qualitative analysis and analysis of organic
			compounds (Qualitative & Quantitative). Along with it they also
			study error in quantitative analysis & ways to minimize them.
		Organic &	Students are made aware of stereochemistry of different
		Inorganic	stereoisomers & organic reaction mechanism in which they study
		Chemistry	different types of reagents, reactions and their mechanisms.

		CH212	Students are introduced to metallurgy to understand chemical reactions and processes occurred in metallurgy. The corrosion &
	Semester II	Physical & Analytical Chemistry CH221	passivity is also included in the syllabus. Students are made aware about concepts of Helmholtz free energy & Gibbs free energy as well as free energy of chemical reactions & physical transformation. Students also study different modes of concentration, distillation of solutions of liquid in liquid, partially immiscible liquids& distillation of immiscible liquids. Students are made to understand volumetric analysis wherein they study non-instrumental volumetric analysis which comprises of study of various titrations, indicators used in it& some theoretical aspects related with titrations.
		Organic & Inorganic Chemistry CH222	Students are introduced to various biomolecules, their role & structural aspects. Students also study different oxidizing and reducing reagents, their selectivity to different substrates, heterocyclic, their preparation & reactions. Students are introduced to organometallic chemistry & use of organometallic compounds in synthesis of organic as well as inorganic compounds. They also study chemical toxicology to know adverse effects of chemicals.
	S. Y. B.Sc. Chemistry (Annual Pattern)	Practical course	Students are trained to determine the rate constant of chemical reactions, heat of solution, heat of neutralization, critical solution temperature of partially miscible system & distribution coefficient. Students are trained for quantitative analysis of different samples such as Na ₂ CO ₃ in washing soda, Aspirin in APC tablet, Aluminum in Alum, strength of H ₂ O ₂ , Copper in Brass & iodimetric methods. Students are trained for organic & inorganic qualitative analysis. They are also trained for preparation of organic compounds & chromatographic techniques like TLC.
3	T. Y. B.Sc. Chemistry Semester III	CH-331 Physical Chemistry	Students are introduced basic concept of physical chemistry. They also learn methods to determine order of reaction, Arrhenius equation, and graphical evaluation of energy of activation. Students learn principle and applications of rotational, vibrational, Raman and electronic spectroscopy. Students will get familiar with phase rule, phase diagram of one and two component systems.
		CH-332 Inorganic Chemistry	Students are made aware of the principles of various theories of bonding like Sedgwick model, Werner's theory VBT, CFT, MOT. They are also made aware of the principles of isomerism, nomenclature and structures of inorganic complexes.
		CH 333 Organic chemistry	It is the basic course in organic chemistry. Students are introduced with concepts like acidity, basicity of organic molecules, electrophile, nucleophile and good and bad leaving groups. Students are introduced with stereochemistry of de substituted cyclohexane. Students are able to understand mechanism of organic reaction. Arrow drawing concept which is important part of reaction mechanism is explained thoroughly in this course. Students are able to identify different types of organic reactions and also they can

[understand reactivity profile of organic molecules.
		CH 334	Students are made aware of quantitative chemical analysis using the
		Analytical	techniques like gravimetry, polarography, AAS, FES and
		Chemistry	spectrophotometry at the levels of macro, micro and trace analysis of
		Chemistry	metals and non-metals from industrial and natural samples.
		CH-335	This course enables the students to learn use of agrochemicals like
		Industrial	pesticide, insecticides, fungicides, fertilizers and their environmental
		Chemistry	impact. Study of food industry makes them aware of food
		Chemistry	1 5 5
			adulteration, storage and processing of food. This course also
			provides opportunity to study agrochemicals, food chemicals on
			industrial scale. Students also learn manufacturing of basic
			chemicals such as Ammonia, Sulphuric acid and Nitric acid.
			Syllabus further comprises study of petrochemicals and eco- friendly
			fuels, where in students study processing of petrochemical fuels,
			properties of fuels and applications of fuels, on conventional energy.
			Syllabus also includes study of cement and glass industry.
			Properties, manufacture and applications of different types of cement
ļ			and glass.
		CH-336 (C)	Students are introduced to the properties and character of
		Biochemistry	fundamental components of living organism such as proteins,
			carbohydrates, lipids, vitamins and hormones. Students are expected
			to get familiarize with cell types, cell organelles and various
-			techniques used in biochemical studies.
	T. Y. B.Sc.	CH-341	The course aims to give fundamental understanding and applications
	Chemistry	Physical	of electrochemical Cells, Nuclear Chemistry, Crystal structure and
	Semester IV	Chemistry	Quantum Chemistry. Students get to know thermodynamics and
			EMF, Chemical cell with and without transfer, application of EMF
			measurement such as pH determination, determination of solubility
			and solubility product. Basic elements of quantum chemistry are also
			introduced.
		CH- 342	Students are made aware of chemistry of f block elements principles
		Inorganic	and applications of catalysis, organometallic chemistry and the
		Chemistry	principles and the applications of metals, semiconductors and
			superconductors.
		CH -343	Students are introduced with carbanions and their reactions.
		Organic	Retrosynthetic analysis concepts are explained to students.
		chemistry	Rearrangement reactions are introduced with mechanistic approach.
			Spectroscopic techniques like PMR, U.V. and I.R. are introduced.
			Students learned to differentiate organic compounds with the help of
			these spectroscopic techniques.
		CH 344	The students are trained in the technique of separation,
		Analytical	identification of purification using chromatographic techniques like
		Chemistry	TLC, GC, HPLC, electrophoresis etc. This knowledge enables them
			to be good analytical of Quality control chemist in various fields.
		CH-345	Students are expected to learn properties, ways to manufacture or
		Industrial	process and application of different types of polymer, paints,
		Chemistry	pigments, dyes, soaps, detergents and cosmetics. Students also learn
			theoretical aspects of manufacturing of sugar and fermentation
			industry. Syllabus further includes study of Pharmaceutical industry

		where students are introduced to general aspects of drug action, manufacturing of some drugs and its usage and lastly there is topic which discusses problems caused by industry such as pollution and generation of waste and what are the ways which can prevent or minimize it.
	CH-346 (C)	Students need to know the significant metabolic pathways necessary
	Biochemistry	for the sustenance of life. Fundamental processes associated with central dogma of molecular biology are taught. Students get acquainted with applications of genetic engineering in various fields like agriculture, industries and medicine.
T. Y. B.Sc.	CH- 347	Students are trained in the techniques such as pH metry,
Practical	Physical	Conductometry, Potentiometry, Colorimetry, Spectrophotometry,
Chemistry	Chemistry	Refractometry and G. M. Counter. They learn to use these
(Annual)	Practical	techniques in order to understand various chemical reactions.
	CH- 348	Students are trained in the IQA of different mixtures of inorganic
	Inorganic	compounds, and the separation of the metal ions using
	Chemistry	chromatographic techniques and inorganic quantitative analysis
	Practical	using the techniques of gravimetry, volumetry, colorimetry
	CH-349	Chemistry is an experimental subject; practical course is proposed to
	Organic	achieve the basic skills required for understanding the reactivity of
	Chemistry	organic molecules and validating the basic principles. It helps in
	Practical	development of practical skills of the students & understanding the
		importance of chemical safety and also explains the factors affecting reaction outcomes and yields.

Sr.	Program	Program Objectives	Program Specific Objectives
No.	Da		
1	BSc	PO1 : Promotion of self study	PSO1 : To enable the students to
	Mathematics		cultivate a mathematical way of
			thinking i.e. making conjectures,
			verifying them with further
			observations, generalizing them, trying
			to find proofs and making observations.
		PO2 : Promotion of thinking	
			PSO2 : To enable the students to
			quantify their experiences in other
			subjects they study.
		PO3 : Confidence	PSO3 : To enable the students to learn
		105. Confidence	the basic structures of mathematics
			through unifying concepts and to
			motivate these structures through
			applications.
		PO4 : Creativity	applications.
		104. Creativity	PSO4 : To enable the students to study
			mathematics for themselves.
		PO5 : Problem Solving	mathematics for themserves.
		rOS. Floblen Solving	DEO5 . To provide high quality
			PSO5 : To provide high quality mathematical education at all levels that
		DOC . Un dersten din e Con es sta	will be vital for scientific and
		PO6 : Understanding Concepts	technological developments.
			PSO6 : To enable the students the
			concept of the subjects of complex
			analysis, Real Analysis, Group Theory,

Course outcomes- B.Sc. Mathematics

PO7 : Development of Writing, Listening and Teaching Skills	Number Theory etc.
PO8 : Group Discussion (Skill of Team	PSO7 : To enable the students for plotting the functions, curves and data in 2 and 3 dimensions.
work, interpersonal skills) PO9 : Social Values: Unity in Diversity	PSO8: To enable the students to communicate the other students for discussion on the subject knowledge.
	PSO9: To live social life, mathematical knowledge is needed, because of give and take process, business, industry, transportation and communication
	depends upon knowledge of mathematics.

Courses Offered

Course outcomes- B.Sc. Physics

Program Offered

Sr. No.	Program	Program Objectives	Program Specific Outcomes
1	B. Sc. Physics	 To provide in depth knowledge of scientific and technological aspects of Physics To familiarize with current and recent scientific and technological developments To enrich knowledge through problem solving, hand on activities, study visits, Projects etc. To train students in skills related to research, education, industry, and market. To create foundation for research and 	 After completion of program, students will be able to have in-depth knowledge of basic concepts in Physics. Students will be able to apply the laws of Physics in real life situations to solve the problems. Students develop aptitude of doing research through undertaking small projects. Student will have set his

development in Electronics	foundation to pursue higher
• To develop analytical abilities towards	education in Physics.
real world problems	5. After completing the
• To help students build-up a progressive	program student will have
and successful career in Physics	developed interdisciplinary
	approach and can pursue higher
	studies in subjects other than
	Physics

Courses Offered

Sr. No.	Course	Course Outcome
1	F. Y. B. Sc.	1. Demonstrate an understanding of Newton's
	1. Mechanics	laws and applying them in calculations of the
		motion of simple systems.
		2. Use the free body diagrams to analyze the
		forces on the object.
		3. Understand the concepts of energy, work, power, the concepts of conservation of energy and be able to perform calculations using them.
		4. Understand the concepts of elasticity and be
		able to perform calculations using them.
		5. Understand the concepts of surface tension and viscosity and be able to perform calculations using them.
		6. Use of Bernoulli's theorem in real life
		problems.
		7. Demonstrate quantitative problem solving
		skills in all the topics covered.
	2. Heat and Thermodynamics	1. Describe the properties of and relationships between the thermodynamic properties of a pure substance.
		 Describe the ideal gas equation and its limitations.
		3. Describe the real gas equation.
		4. Apply the laws of thermodynamics to
		formulate the relations necessary to analyze a thermodynamic process.
		5. Analyze the heat engines and calculate thermal efficiency.
		6. Analyze the refrigerators, heat pumps and calculate coefficient of performance.
		7. Understand property 'entropy' and derive
		some thermo dynamical relations using entropy concept.
		8. Understand the types of thermometers and
		their usage.

	3. Physics Principles and Applications	1. To demonstrate an understanding of
	5. Thysics Timerples and Applications	electromagnetic waves and its spectrum.
		2. Understand the types and sources of
		electromagnetic waves and applications.
		÷
		3. To understand the general structure of atom,
		spectrum of hydrogen atom.
		4. To understand the atomic excitation and
		LASER principles.
		5. To understand the bonding mechanism in
		molecules and rotational and vibrational energy
		levels of diatomic molecules.
		6. To demonstrate quantitative problem
		solving skills in all the topics covered.
	4. Electromagnetic	1. Demonstrate an understanding of the
		electric force, field and potential, and related
		concepts, for stationary charges.
		2. Calculate electrostatic field and potential of
		simple charge distributions using Coulomb's law
		and Gauss's law.
		3. Demonstrate an understanding of the
		dielectric and effect on dielectric due to electric
		field.
		4. Demonstrate an understanding of the
		magnetic field for steady currents using Biot-
		Savart and Ampere's laws.
		5. Demonstrate an understanding of
		magnetization of materials.
		6. Demonstrate quantitative problem solving
		skills in all the topics covered.
	5. Practical	1. Acquire technical and manipulative skills in
		using laboratory equipment, tools, and materials.
		2. Demonstrate an ability to collect data
		through observation and/or experimentation and
		interpreting data.
		3. Demonstrate an understanding of laboratory
		procedures including safety, and scientific
		methods.
		4. Demonstrate a deeper understanding of
		abstract concepts and theories gained by
		experiencing and visualizing them as authentic
		phenomena.
		5. Acquire the complementary skills of
		collaborative learning and teamwork in laboratory
		settings.
2.	S. Y. B. Sc.	scungs.
		After learning this course students will be conclude
	Mathematical Methods in Physics I	After learning this course students will be capable
		to knows the
1		1. Complex algebra :- the basic idea of complex

		algebra is useful in physics and applied based physics course, e.g. Computer programming, 2. vector algebra:- it's plays an important role in Geometry, Mathematics and Engineering physics 3. Students understand the concept of partial differentiation equation. Such type of equation is applicable for solving various difficult problems in engineering and applied physics 4:- After completing this chapter students understands singular and nonsingular points of differential equation. Students will have developed interdisciplinary approach and can pursue higher
		studies in subjects, like Mathematics and Computer
Electronics I		Science and other branches.
Electronics I		 After learning this course students will be capable to knows the Understand the application of various theorem to different circuits. Understand the properties and working of transistor, and operational amplifier etc Understand the functions of operational amplifiers. Design circuits using transistors and operational amplifiers. Understand the Boolean algebra and logic circuits. Skill of solving problems.
Oscillations, V	Waves and Sound	After learning this course students will be capable to knows the 1 Solve the equations of motion for simple harmonic, damped motion and forced oscillations. 2 Understanding of Lissajous figures and to demonstate Lissajous figures experimently and its applications. 3 Describe oscillatory motion with graphs and equations, and using these descriptions to solve problems of oscillatory motion. 4 To solve LCR series circuits and its concepts in damped oscillation. Explain oscillation in terms of energy exchange, giving various examples. 5 Solve problems relating to undamped, damped and force oscillators. 6. To understand the term resonance and applications of resonance. 7 .Concept of wave motion and to know the different types of waves

		 8 Calculate the phase velocity of a travelling wave. To understand the term seismology and its study. 8 Explain the Doppler effect in sound /light and predict in qualitative terms the frequency. 9 The frequency change that will occur for a stationary and a moving observer. 10 Application of Doppler effects. 11. Define the decibel scale qualitatively, and give examples of sounds at various levels.
		12. The pitch, intensity, and quality of tones produced by musical instruments13 To understand reverberation, reverberation time, stroboscope.
		14. The problem solving skill in all topics.
	PH-222 Optics	 1.:- acquire the basic concepts from geometrical optics like sign convention, lens maker's formula by using this concepts students will become good opticians in society , 2:- After learning this Lens Abberation, students will able to remove the different types of abberations and it is for lens maker's formula 3:-students get more idea about spectrum of different seven colours in nature due to interference of light also, due to constructively and destructively interfere of light students well undersand about the relation between intensity and amplitude of wave light , light beam spreads out after passing through an aperture 4:-the role of polarization is in electromagnetic waves,O-rays and E-rays which is appreciate in various modern optical devices that utilize electromagnetic wave , Interference and diffraction are the polarization phenomena , analyze gets the interference and diffraction phenomena.
	PH -232Practicals (S.Y.B.Sc.)	Practical course will help to student to improve the knowledge from theory course Whatever the students learned in their theory courses such as, Newtons Rings, different Circuit thermo, Logic gates ,characterization based electronic experiment waves oscillations and sound and optics. They need to verify basic concept.
3	T. Y. B.Sc.	
	Mathematical Methods in Physics II	1. There are following four Chapter Special functions
		in this course: 2. Curvilinear Co-ordinates

	3. The Special Theory of Relativity
	4. Differential equations
	5. Special functions
	 By studying this course the basic and advanced mathematical background required for other courses. After completing this course student get knowledge of basic Curvilinear Co- ordinates system, Special Theory of Relativity, differential equations and Special functions
	7. Skill of solving problems
Classical Electrodynamics	 After completion of course students well known Be able to understand basic laws of electrostatics Gauss laws and by using use method of images in electrostatics to solve the boundary value problems. To explain the basic laws in magneto statics like Biot-Savart's law, Ampere's law etc. Have understood Maxwell's laws of electrodynamics. Be able to solve Maxwell's equations in free space and write equation of plane e-m waves Skill of solving problems
Solid State Physics PH-332:	 After completion of course students should 1. Understanding of various types of crystal structures and should have understood the concept of reciprocal lattice. 2. Student should have idea of various characterization techniques like x-ray diffraction, UV-visible spectroscopy, SEM, TEM, TGA etc. 3. Have understood the free electron model, band formation and origin of band gap. 4. Be able to understand the theory of magnetism and phenomena like superconductivity. 5. To understand the concept of band formation and by using band theory of solids to compare conductor, semiconductor, and insulator. 6. Skill of solving problems

Quantum Mechanics	T.Y.B.Sc., Quantum Mechanics course is a foundation course. In this course, student will learn idea of wave function and application of schrodingers equations. Understand and explain the differences between classical and quantum mechanics, understand Schroedinger equation for simple potentials. Also, students will gain a basic understanding of the formalism and 'language' of quantum mechanics especially commutation brackets, various quantum mechanical operators.syudent gets skill of solving problems.
Classical Mechanics PH-343:	 After completion of course students should understand 1. All the classical concepts are useful and applicable to day today life. 2. Concept of central force and Keplers law, Poissons Bracket, Jocobi identity 3. Lagragian, Hamaltonian eqution and their application. 4. Skill of solving problems.
PH- 343 Thermodynamics and Statistical Physics	After completion of this course, students get under the stand basic assumptions of kinetic theory of gases, coefficient of viscosity, coefficient thermal conductivity, diffusion of solid, transport phenomenon. Thermo dynamical physics students will get more clear about different law of thermodynamics and it's relation from this students will able to find different Maxwell's equations, Elementary concepts of Statistics such as probability, distribution functions, Gaussian Probability distribution etc. , Statistical distribution of system of particles, Different statistical ensembles: micro canonical, canonical and calculation of mean values in canonical ensembles, Maxwell-Boltzmann's, Bose Einstein , Fermi Dirac Statistics, .
PH-334 Atomic and Molecular Physics	On successful completion of this course students will be able to understand about 1. 1:- The study of atomic structure has played important role in the fundamental development of physics and in the development of our understanding of the structures of the atom and matter atomic

	structures starts from Rutherford's atomic
	model up to Vector atomic model. The
	concepts of space quantization, Spectra of
	sodium atom Pauli Exclusion Principle,
	Spectral notation for quantum states
	Concept of atomic absorption and emission
	spectra, spectra associated with hydrogen
	atom LS and JJ coupling schemes
	associated with one and two valence
	electron system. The splitting of atomic
	energy levels and associated spectral lines
	when atoms are placed in external
	magnetic and electric field: Zeeman Effect,
	Stark Effect. The idea about x-ray
	spectroscopy, molecular spectroscopy.
	Details about the Raman Effect and
	Applications.
PH-344 Nuclear Physics	On successful completion of this course students
	will be able to understand about The concepts
	Basic properties of nucleus and its application, it
	may be used for both constructive as well as
	destructive purposes.
PH-335, Computational Physics	The main objectives of course are to introduce the basic course in computer and basic language of c programming for T. Y. B.Sc. students In this course, student will understand basic concepts of algorithms and flowcharts, programming in C language, errors in computations and various numerical analysis methods such as, obtaining roots of a function, finding integration. Also, students will get practice of programming through small programs like sorting array, graphics, finding factorial, using functions and pointers etc.
Electronics/Advanced Electronics	The main advantages of this course is 1. Understand the basic knowledge of basic
	components like LED, Photodiode, Transitor

	 , OP-amp, IC741, IC555, etc 2. Able to design various circuits which can be used professionally. Ie. Power supply, Electronically regulator using IC723 3. Able to understand AC, DC current/voltages concept for safety measurements. 4. Able to understand the concepts of Half Adder, Ful Adder, substractor, K-map, counters etc 5. To skill of solving problem
Elements of Materials Science	On successful completion of the course students know the following basic concepts
	1To know the general information regarding the properties of materials.
	2. To solve concepts in Materials Science to solve
	engineering problems. 3. It is easy to select materials for design and
	construction for various purposes.
	4. Able to identify smart materials and use of them in day today life.
	5. skill of the solving problem
PH-394- Physics Project	Project course will help to student to improve the
	knowledge from theory and practical course

PH-374 ,Practical course- I	The main objectives of course are to increase the
	understanding depth of theoretical concept like
	physical properties of matter, quantum mechanics,
	nuclear physics, statistical mechanics,
	electrodynamics etc.
	On successful completion of this practical course students will able to understand
	1. Have developed skills to plan experiments
	for studying the properties of matter like
	viscosity, Young's modulus and Thermal
	conductivity
	2. Be able to plan and perform electronic
	experiments like Anderson's bridge,
	determination of energy gap of
	semiconductor etc.
	3. Be able gain necessary skills to perform
	experiments like verification of Stephan's
	Law, Determination of Plank's constant
	and Redberg's constant.
	and Redberg 5 constant.
	4. Be able to plan and execute experiments
	for determination of M. I. of a bar by
	bifilar suspension method and
	electromagnetic pendulum.
	electromagnetic pendulum.
	5. Be able to analyses data from experiments
	of x-ray diffraction.

PH-384 Practical Course –II	On successfully completing the course students
111-304 Hacucai Course -11	should
	1. Be able to write and execute simple
	programs in C language.
	2. Be able to perform computer interfaced
	Physics experiments.
	3. Be able to determine particle size by using
	Scherer formula from XRD.
	Selerer formula from AKD.
	4. Be able to plan and perform experiment to
	determine the thickness of cylindrical
	obstacle by using diffraction of laser light
	5. Have acquired necessary skills to design a
	stable multivibrator circuit using IC-555.
	6. Be able to plan an experiment to study the
	characteristics of FET.
	7. Should be able to analyseuv-visible
	spectroscopic data of semiconductor thin
	films.
	1111118.